King Fahd University of Petroleum and Minerals

College of Computer Sciences and Engineering Information and Computer Science Department

ICS 254: Discrete Structures II Second semester 2016-2017 (162) Major Exam #1, Thursday March 9, 2017 Time: **120** Minutes

Name: _____

ID#: _____

Section: _____

Instructions:

- 1. The exam consists of 10 pages, including this page, containing 5 questions.
- 2. Answer all questions. Show all the steps.
- 3. Make sure your answers are **clear** and **readable**.
- 4. The exam is closed book and closed notes. **No calculators** or any helping aides are allowed. Make sure you turn off your mobile phone and keep it in your pocket.
- 5. If there is no space on the front of the page, use the back of the page.

Question	Maximum Points	Earned Points
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

Q1: [20 points] Evaluate the following.

(a) [10 points] $(59^8 \mod 19)^4 \mod 18$

(b) [10 points] $(1AE)_{16} \times (BBC)_{16} = ($

)8

Q2: [20 points] Solve the following questions

(a) [10 points] Prove that the product of any three consecutive integers is divisible by 6.

(b) [10 points] Show that a positive integer is divisble by 11 if and only if the difference of the sum of its decimal digits in even-numbered positions and the sum of its decimal digits in odd-numbered positions is divisible by 11.

Q3: [20 points] Solve the following questions

(a) [10 points] Using the modular exponentiation algorithm, find 5^{37} mod 19.

(b) [10 points] Let x be a positive integer divisible by 5. The *lcm* of x and x + 5 is 1530. Find x.

Q4: [20 points]

(a) [10 points] Solve the congruence: $185x \equiv 46 \pmod{253}$. Show all your steps.

L	

(b) [10 g	points] U	Jse the i	method	of back	substit	tution t	to solve	the s	system	of co	ngruer	ices:
			X	$\equiv 5 (m$	od 24),	$x \equiv 23$	(mod 3	30).				

Q5: [20 points]

- (a) [10 points] Use Fermat's Little Theorem to find
 (i) 7¹¹¹ mod 23, and
 (ii) 7¹¹¹ mod 19.

/ mod +57.	

(b) [10 points] Use the results of part (a) and the Chinese Remainder theorem to find $7^{111} \mod 437$.